
www.manaraa.com

J. LOGIC PROGRAMMING 1994:19, 20:1{679 1GOLOG: A LOGIC PROGRAMMINGLANGUAGE FOR DYNAMIC DOMAINSHECTOR J. LEVESQUE, RAYMOND REITER, YVESLESP�ERANCE1, FANGZHEN LIN, AND RICHARD B.SCHERL2. This paper proposes a new logic programming language called GOLOGwhose interpreter automatically maintains an explicit representation of thedynamic world being modeled, on the basis of user supplied axioms aboutthe preconditions and e�ects of actions and the initial state of the world.This allows programs to reason about the state of the world and considerthe e�ects of various possible courses of action before committing to aparticular behavior. The net e�ect is that programs may be written at amuch higher level of abstraction than is usually possible. The languageappears well suited for applications in high level control of robots andindustrial processes, intelligent software agents, discrete event simulation,etc. It is based on a formal theory of action speci�ed in an extended versionof the situation calculus. A prototype implementation in Prolog has beendeveloped. /1. INTRODUCTIONComputer systems are often embedded in complex environments with which theyinteract. In programming such applications, the designer normally has an elaborateThis research received �nancial support from the Information Technology Research Center(Ontario, Canada), the Institute for Robotics and Intelligent Systems (Canada), and the NaturalScience and Engineering Research Council (Canada). Levesque and Reiter are fellows of theCanadian Institute for Advanced Research.Address correspondenceto Department of Computer Science, University of Toronto, Toronto, ON, M5S 1A4 Canada.fhector,reiter,lesperan,,scherlg@cs.toronto.edu. http://www.cs.toronto.edu/~cogrobo/1Current address: Department of Computer Science, Glendon College, York University, 2275Bayview Ave., Toronto, ON, Canada M4N 3M6.2Current address: Department of Computer and Information Science, New Jersey Institute ofTechnology, University Heights, Newark, NJ 07102 USA.THE JOURNAL OF LOGIC PROGRAMMINGc Elsevier Science Inc., 1994655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

www.manaraa.com

2 mental model of the environment and how the system's actions will change theenvironment's state. Users of the system also have this kind of mental model.Typically, however, the system itself does not maintain an explicit model of theworld it is operating in. This can make life di�cult both for programmers andusers | they may end up having to reconstruct the model being used, as there isno way for the system to explain or justify its behavior. But more importantly,this makes it di�cult to recon�gure or extend the system by giving it \high-level"instructions, since it has no understanding at all of what it is doing.1In this paper, we propose a programming language for such systems, whose de-sign is based on a sophisticated logic of action. The interpreter for the languageautomatically maintains an explicit model of the system's environment and capa-bilities, which can be queried and reasoned with at run time. This allows complexbehaviors to be de�ned at a much higher level of abstraction than would be possibleotherwise. The language appears to be a distinct improvement over current tech-nology for applications such as: high-level control of robots and mechanical devices,programming intelligent software agents, modeling and simulation of discrete eventsystems, etc.In the next section, we outline the theory of action on which our language isbased. Then, we show how complex actions can be de�ned in the framework andexplain how the resulting set of complex action expressions can be viewed as aprogramming language. In section 4, we illustrate how our language is used throughan example: a simple elevator controller. In the following section, we describean implementation of the language, and sketch what experimental applicationshave been developed. Section 6 discusses the main distinguishing characteristicsof the language. We conclude by summarizing the main features of our proposal,discussing its limitations, and outlining ongoing work that seeks to address these.The presentation throughout is informal in nature; in a companion paper [14], weexplore the more formal aspects of this work.2. AN INFORMAL INTRODUCTION TO THE SITUATION CALCULUSTo obtain the bene�ts mentioned in the introduction, it is necessary to explicitlymodel how the world changes as the result of performing actions. There are avariety of ways of doing this, and we use the language of the situation calculus.2.1. Intuitive Ontology for the Situation CalculusThe situation calculus (McCarthy [20]) is a �rst order language (with, as we shall seelater, some second order features) speci�cally designed for representing dynamicallychanging worlds. All changes to the world are the result of named actions. Apossible world history, which is simply a sequence of actions, is represented by a�rst order term called a situation. The constant S0 is used to denote the initialsituation, namely that situation in which no actions have yet occurred. There isa distinguished binary function symbol do; do(�; s) denotes the successor situationto s resulting from performing the action �. Actions may be parameterized. Forexample, put(x; y) might stand for the action of putting object x on object y, in1A similar view is advanced in Dixon [3].

www.manaraa.com

3which case do(put(A;B); s) denotes that situation resulting from placing A on Bwhen the world is in situation s. Notice that in the situation calculus, actions aredenoted by �rst order terms, and situations (world histories) are also �rst orderterms. For example, do(putdown(A); do(walk(L); do(pickup(A); S0))) is a situationdenoting the world history consisting of the sequence of actions [pickup(A), walk(L),putdown(A)]. Notice that the sequence of actions in a history, in the order in whichthey occur, is obtained from a situation term by reading o� its actions from rightto left.Relations whose truth values vary from situation to situation, called relationaluents, are denoted by predicate symbols taking a situation term as their lastargument. For example, is carrying(robot; p; s), meaning that a robot is carryingpackage p in situation s, is a relational uent. Functions whose denotations varyfrom situation to situation are called functional uents. They are denoted byfunction symbols with an extra argument taking a situation term, as in loc(robot; s),i.e., the robot's location in situation s.2.2. Axiomatizing Actions and their E�ects in the Situation CalculusActions have preconditions { necessary and su�cient conditions that characterizewhen the action is physically possible. For example, in a blocks world, we mighthave:2 Poss(pickup(x); s) �[(8z):holding(z; s)] ^ nexto(x; s) ^ :heavy(x):World dynamics are speci�ed by e�ect axioms. These describe the e�ects of agiven action on the uents { the causal laws of the domain. For example, a robotdropping a fragile object causes it to be broken:Poss(drop(r; x); s) ^ fragile(x; s) � broken(x; do(drop(r; x); s)): (2.1)Exploding a bomb next to an object causes it to be broken:Poss(explode(b); s) ^ nexto(b; x; s) � broken(x; do(explode(b); s)): (2.2)A robot repairing an object causes it to be not broken:Poss(repair(r; x); s) � :broken(x; do(repair(r; x); s)): (2.3)2.3. The Frame ProblemAs �rst observed by McCarthy and Hayes [20], axiomatizing a dynamic world re-quires more than just action precondition and e�ect axioms. So-called frame axiomsare also necessary. These specify the action invariants of the domain, namely, thoseuents which remain una�ected by a given action. For example, a robot droppingthings does not a�ect an object's colour:Poss(drop(r; x); s) ^ colour(y; s) = c � colour(y; do(drop(r; x); s)) = c:2In formulas, free variables are considered to be universally quanti�ed from the outside. Thisconvention will be followed throughout the paper.

www.manaraa.com

4 A frame axiom describing how the uent broken remains una�ected:Poss(drop(r; x); s)^ :broken(y; s) ^ [y 6= x _:fragile(y; s)]� :broken(y; do(drop(r; x); s)):The problem introduced by the need for such frame axioms is that we can expecta vast number of them. Only relatively few actions will a�ect the truth value of agiven uent; all other actions leave the uent unchanged. For example, an object'scolour is not changed by picking things up, opening a door, going for a walk, electinga new prime minister of Canada, etc. This is problematic for the axiomatizer whomust think of all these axioms; it is also problematic for the theorem proving system,as it must reason e�ciently in the presence of so many frame axioms.2.3.1. What Counts as a Solution to the Frame Problem? Supposethe person responsible for axiomatizing an application domain has speci�ed all ofthe causal laws for the world being axiomatized. More precisely, she has succeededin writing down all the e�ect axioms, i.e. for each uent F and each action A whichcan cause F 's truth value to change, axioms of the formPoss(A; s) ^R(~x; s) � (:)F (~x; do(A; s)):Here, R is a �rst order formula specifying the contextual conditions under whichthe action A will have its speci�ed e�ect on F .A solution to the frame problem is a systematic procedure for generating, fromthese e�ect axioms, all the frame axioms. If possible, we also want a parsimoniousrepresentation for these frame axioms (because in their simplest form, there are toomany of them).2.4. A Simple Solution to the Frame ProblemBy appealing to earlier ideas of Haas [7], Schubert [29] and Pednault [21], Reiter[23] proposes a simple solution to the frame problem, which we illustrate with anexample. Suppose that (2.1), (2.2), and (2.3) are all the e�ect axioms for the uentbroken, i.e. they describe all the ways that an action can change the truth value ofbroken. We can rewrite (2.1) and (2.2) in the logically equivalent form:Poss(a; s) ^ [(9r)fa = drop(r; x)^ fragile(x; s)g_(9b)fa = explode(b) ^ nexto(b; x; s)g]� broken(x; do(a; s)): (2.4)Similarly, consider the negative e�ect axiom (2.3) for broken; this can be rewrittenas:Poss(a; s) ^ (9r)a = repair(r; x) � :broken(x; do(a; s)): (2.5)In general, we can assume that the e�ect axioms for a uent F have been writtenin the forms:Poss(a; s) ^ +F (~x; a; s) � F (~x; do(a; s)); (2.6)Poss(a; s) ^ �F (~x; a; s) � :F (~x; do(a; s)): (2.7)Here +F (~x; a; s) is a formula describing under what conditions doing the action ain situation s leads the uent F to become true in the successor situation do(a; s);

www.manaraa.com

5similarly �F (~x; a; s) describes the conditions under which performing a in s resultsin F becoming false in the successor situation. The solution to the frame problemof [23] rests on a completeness assumption, which is that the causal axioms (2.6)and (2.7) characterize all the conditions under which action a can lead to a uentF (~x) becoming true (respectively, false) in the successor situation. In other words,axioms (2.6) and (2.7) describe all the causal laws a�ecting the truth values of theuent F . Therefore, if action a is possible and F (~x)'s truth value changes fromfalse to true as a result of doing a, then +F (~x; a; s) must be true and similarly for achange from true to false. Reiter [23] shows how to derive a successor state axiomof the following form from the causal axioms (2.6) and (2.7) and the completenessassumption.Successor State AxiomPoss (a; s) � [F (~x; do(a; s)) � +F (~x; a; s) _ (F (~x; s) ^ :�F (~x; a; s))]This single axiom embodies a solution to the frame problem. Notice that this axiomuniversally quanti�es over actions a. In fact, this is one way in which a parsimonioussolution to the frame problem is obtained.Applying this to our example about breaking things, we obtain the followingsuccessor state axiom:Poss(a; s) � [broken(x; do(a; s)) �(9r)fa = drop(r; x)^ fragile(x; s)g _(9b)fa = explode(b) ^ nexto(b; x; s)g _broken(x; s) ^ :(9r)a = repair(r; x)]:It is important to note that the above solution to the frame problem presupposesthat there are no state constraints, as for example in the blocks world constraint:(8s):on(x; y; s) � :on(y; x; s). Such constraints sometimes implicitly contain e�ectaxioms (so-called indirect e�ects), in which case the above completeness assump-tion will not be true. The assumption that there are no state constraints in theaxiomatization of the domain will be made throughout this paper. In [17, 15], theapproach discussed in this section is extended to deal with state constraints, bycompiling their e�ects into the successor state axioms.2.5. Axiomatizing an Application Domain in the Situation CalculusIn general, a particular domain of application will be speci�ed by the union of thefollowing sets of axioms:� Action precondition axioms, one for each primitive action.� Successor state axioms, one for each uent.� Unique names axioms for the primitive actions.� Axioms describing the initial situation { what is true initially, before anyactions have occurred. This is any �nite set of sentences which mention nosituation term, or only the situation term S0.� Foundational, domain independent axioms for the situation calculus. Theseinclude unique names axioms for situations, and an induction axiom. Sincethese play no special role in this paper, we omit them. For details, and fortheir metamathematical properties, see Lin and Reiter [17] and Reiter [24].

www.manaraa.com

63. COMPLEX ACTIONS, PROCEDURES AND GOLOGThe previous section outlines a situation calculus-based approach for representing,and reasoning about, simple actions. It fails to address the problem of expressing,and reasoning with, complex actions and procedures, for example:� if car in driveway then drive else walk endIf� while (9block) ontable(block) do remove a block endWhile� proc remove a block (�x)[pickup(x); putaway(x)] endProcHere, we have introduced a procedure declaration (remove a block), and also thenondeterministic operator �; (�x)[�(x)] means nondeterministically pick an indi-vidual x, and for that x, perform �(x). We shall see later that this kind of nonde-terminism is very useful for robotics and similar applications.3.1. Complex Actions and Procedures in the Situation CalculusOur approach will be to de�ne complex action expressions using some additionalextralogical symbols (e.g., while, if, etc.) which act as abbreviations for logicalexpressions in the language of the situation calculus. These extralogical expressionsshould be thought of as macros which expand into genuine formulas of the situationcalculus. So below, we de�ne the abbreviation Do(�; s; s0), where � is a complexaction expression; intuitively, Do(�; s; s0) will hold whenever the situation s0 is aterminating situation of an execution of complex action � starting in situation s.Note that our complex actions may be nondeterministic, that is, may have severaldi�erent executions terminating in di�erent situations.Do is de�ned inductively on the structure of its �rst argument as follows:1. Primitive actions:Do(a; s; s0) def= Poss(a[s]; s) ^ s0 = do(a[s]; s):By the notation a[s] we mean the result of restoring the situation argumentsto any functional uents mentioned by the action term a (see the next itemimmediately below). For example, if a is read(favorite book(John)), and iffavorite book is a functional uent (which means that its value is situationdependent) then a[s] is read(favorite book(John; s)).2. Test actions:Do(�?; s; s0) def= �[s]^ s = s0:Here, � is a pseudo-uent expression (not a situation calculus formula) whichstands for a formula in the language of the situation calculus, but with allsituation arguments suppressed. �[s] denotes the situation calculus formulaobtained from � by restoring situation variable s as the suppressed situationargument for all uent names (relational and functional) mentioned in �.Examples: If � is (8x):ontable(x) ^ :on(x;A);then �[s] stands for (8x):ontable(x; s) ^ :on(x;A; s):

www.manaraa.com

7If � is (9x)on(x; favorite block(Mary));then �[s] stands for(9x)on(x; favorite block(Mary; s); s):3. Sequence:Do([�1; �2]; s; s0) def= (9s�):(Do(�1; s; s�) ^ Do(�2; s�; s0)):4. Nondeterministic choice of two actions:Do((�1 j �2); s; s0) def= Do(�1; s; s0) _ Do(�2; s; s0):5. Nondeterministic choice of action arguments:Do((�x) �(x); s; s0) def= (9x)Do(�(x); s; s0):6. Nondeterministic iteration: Execute � zero or more times.Do(��; s; s0) def=(8P):f(8s1)P (s1; s1) ^ (8s1; s2; s3)[P (s1; s2) ^Do(�; s2; s3) � P (s1; s3)] g� P (s; s0):In other words, doing action � zero or more times takes you from s to s0 i�(s; s0) is in every set (and therefore, the smallest set) such that:(a) (s1; s1) is in the set for all situations s1.(b) Whenever (s1; s2) is in the set, and doing � in situation s2 takes you tosituation s3, then (s1; s3) is in the set.The above de�nition of nondeterministic iteration utilizes the standard sec-ond order way of expressing this set. Some appeal to second order logicappears necessary here because transitive closure is not �rst order de�nable,and nondeterministic iteration appeals to this closure.Conditionals and while-loops can be de�ned in terms of the above constructs asfollows:if � then �1 else �2 endIf def= [�? ; �1] j [:�? ; �2];while � do � endWhile def= [[�? ; �]� ; :�?]:ProceduresThe di�culty with giving a situation calculus semantics for recursive procedurecalls using macro expansion is that there is no straightforward way to macro expanda procedure body when that body includes a recursive call to itself.1. We begin with an auxiliary macro de�nition: For any predicate symbol P ofarity n+ 2, taking a pair of situation arguments:Do(P (t1; : : : ; tn); s; s0)def= P (t1[s]; : : : ; tn[s]; s; s0):In what follows, expressions of the form P (t1; : : : ; tn) occurring in programswill serve as procedure calls, and we will understand Do(P (t1; : : : ; tn); s; s0)to mean that executing the procedure P on actual parameters t1; : : : ; tn

www.manaraa.com

8 causes a transition from situation s to s0. Notice that in the macro ex-pansion, the actual parameters (ti) are �rst evaluated with respect to thecurrent situation s (ti[s]) before passing them to the procedure P , so theprocedure mechanism we are de�ning is call by value. Because we now wantto include procedure calls among our actions, we extend the de�nition ofcomplex actions to consist of any expression that can be constructed fromprimitive actions and procedure calls using the complex action constructorsof 1 - 6 above.2. Next, we de�ne a situation calculus semantics for programs involving (recur-sive) procedures. We suppose, in the standard block-structured program-ming style, that a GOLOG program consists of a sequence of declarationsof procedures P1, : : : , Pn, with formal parameters ~v1; : : : ; ~vn and procedurebodies �1; : : : ; �n respectively, followed by a main program body �0. Here,�1; : : : ; �n; �0 are complex actions, extended by actions for procedure calls,as described in 1 above. So a GOLOG program will have the form:proc P1 (~v1) �1 endProc ; � � � ; proc Pn (~vn) �n endProc ; �0We de�ne the result of evaluating a program of this form as follows:Do(fproc P1 (~v1) �1 endProc ; � � � ; proc Pn (~vn) �n endProc ; �0g; s; s0)def= (8P1; : : : ; Pn):[n̂i=1(8s1; s2; ~vi):Do(�i; s1; s2) � Do(Pi(~vi); s1; s2)]� Do(�0; s; s0):This is the situation calculus de�nition corresponding to the more usualScott-Strachey least �xed-point de�nition in standard programming languagesemantics (Stoy [32]).3Examples:1. Given that down means move an elevator down one oor, de�ne d(n), mean-ing move an elevator down n oors.proc d(n) (n = 0)? j d(n� 1) ; down endProc2. Parking an elevator on the ground oor:proc park (� m)[atfloor(m)? ; d(m)] endProc3. De�ne above to be the test action which is the transitive closure of on.proc above(x; y) (x = y)? j (� z)[on(x; z)? ; above(z; y)] endProc4. clean means put away all the blocks into the box.proc clean (8x)[block(x) � in(x;Box)]? j(� x)[(8y):on(y; x)? ; put(x;Box)] ; clean endProc3By using programs as above within the bodies of other procedures, we obtain the tree-structured nesting of procedures typical of Algol-like languages. Moreover, we get the lexicalscoping rules of these languages for free from our use of the quanti�ers in the de�nition of Do.

www.manaraa.com

95. A GOLOG blocks world program consisting of three procedure declarationsdevoted to creating towers of blocks, and a main program which makes aseven block tower, while ensuring that block A is clear in the �nal situation.proc maketower (n) % Make a tower of n blocks.(� x;m)[tower(x;m)? ; % tower(x;m) means that there is a tower% of m blocks, whose top block is x:if m � n then stack(x; n�m)else unstack(x;m� n)endIf]endProc ;proc stack (x; n) % Place n blocks on the tower whose top block is x.n = 0? j (� y)[put(y; x) ; stack(y; n � 1)]endProc ;proc unstack (x; n) % Remove n blocks from the tower% whose top block is x.n = 0? j (� y)[on(x; y)? ; movetotable(x) ; unstack(y; n � 1)]endProc ;% main: create a seven block tower, with A clear at the end.maketower(7) ;:(9x)on(x;A)?Except for procedures, this formalization draws considerably from dynamic logic[5]. In e�ect, it rei�es as situations in the object language of the situation calculus,the possible worlds with which the semantics of dynamic logic is de�ned. For amore technical treatment of this macro approach to complex actions, see Levesque,Lin, and Reiter [14].3.2. Why Macros?Programs and complex actions \macro expand" to (sometimes second order) formu-las of the situation calculus; complex behaviors are described by situation calculusformulas. But why do we treat these as macros rather than as �rst class objects(terms) in the language of the situation calculus? To see why, consider the complexaction while [(9block)ontable(block)] do remove a block endWhile:Now ask what kind of thing is ontable(block)? It is not a uent, since uents takesituations as arguments. But it is meant to stand for a uent since the expressionontable(block) will be evaluated with respect to the current situation of the execu-tion of the while-loop. To see what must happen if we avoid the macro approach,suppose we treat complex actions as genuine �rst order terms in the language ofthe situation calculus.� We must augment this language with new distinguished function symbols ?,;, j, �, and perhaps while, if then else.� Moreover, since a while-loop is now a �rst order term, the p in while(p; a)must be a �rst order term also. But p can be any \formula" standing for asituation calculus formula, e.g. ontable(block), (9x; y):ontable(x)^:red(x)_on(x; y):

www.manaraa.com

10 � So we must introduce new function symbols into the language: con, dontable,and, or, exists, not etc. (We need con to distinguish it from the uent on.)Now these \formulas" look like genuine terms:dontable(block);exists(X; exists(Y; or(and(dontable(X); not(dred(X)));con(X; y)))):Notice that X and Y here must be constants. In other words, we mustreify uents and formulas about uents whose situation arguments havebeen suppressed. This makes the resulting �rst order language much morecomplicated.� Even worse, we must axiomatize the correspondence between these rei�edformulas and the actual situation calculus formulas they stand for. In theaxioms for Do, such rei�ed formulas get evaluated asDo(p?; s; s0) � apply(p; s) ^ s = s0:Here, apply(p; s) is true i� the rei�ed formula p, with its situation arguments restored (so that it becomes a genuine situation calculus formula), is true.So we have to axiomatize apply. These axioms are schemas over uentsF and rei�ed formulas p; p1; p2 and the quanti�ed \variables" X of theseexpressions.apply(F̂ (t1; : : : ; tn); s) � F (apply1(t1; s); : : : ; apply1(tn; s); s);where apply1 restores situation arguments to functional uents. Also neededare: apply(and(p1; p2); s) � apply(p1; s) ^ apply(p2; s);apply(or(p1; p2); s) � apply(p1; s) _ apply(p2; s);etc.All of this would result in a much more complex theory. To avoid this technicalclutter, we have chosen to take the above macro route in de�ning complex actions,and to see just how far we can push this idea. As we shall see, it is possible todevelop a very rich theory of actions this way.3.3. Programs as Macros: What Price Do We Pay?By opting to de�ne programs as macros, we obtain a much simpler theory thanif we were to reify these actions. The price we pay for this is a less expressiveformalism. For example, we cannot quantify over complex actions, since these arenot objects in the language of the situation calculus. This means, for example, thatwe cannot synthesize programs using conventional theorem proving techniques, asin Manna and Waldinger [19]. In their approach to program synthesis, one wouldobtain a program satisfying the goal formula Goal as a side e�ect of proving thefollowing entailment:Axioms j= (9�; s):Do(�; S0 ; s) ^Goal(s):Here, Axioms are those described in Section 2.5. But the program to be synthesizedis being existentially quanti�ed in the theorem, so that this theorem cannot evenbe expressed in our language.

www.manaraa.com

11On the other hand, many other program properties are, in principle, provablewith our formalism. Moreover, doing so is (conceptually) straightforward preciselybecause program executions are formulas of the situation calculus.1. Correctness: To show that, whenever program � terminates, it leads to aworld situation satisfying property P :Axioms j= (8s):Do(�; S0; s) � P (s):Or, the stronger Axioms j= (8s0; s):Do(�; s0; s) � P (s):2. Termination: To show that program � terminates:Axioms j= (9s)Do(�; S0 ; s):Or, the stronger Axioms j= (8s0)(9s)Do(�; s0 ; s):In other words, our macro account is well-suited to applications where a program� is given, and the job is to prove it has some property. As we will see, the mainproperty we have been concerned with is execution: given � and an initial situation,�nd a terminating situation for �, if one exists. To do so, we prove the termination of� as above, and then extract from the proof a binding for the terminating situation.3.4. GOLOGThe program and complex action expressions de�ned above can be viewed as a pro-gramming language whose semantics is de�ned via macro-expansion into sentencesof the situation calculus. We call this language GOLOG , for \alGOl in LOGic".GOLOG appears to o�er signi�cant advantages over current tools for applicationsin dynamic domains like the high-level programming of robots and software agents,process control, discrete event simulation, etc. In the next section, we present asimple example.4. AN ELEVATOR CONTROLLER IN GOLOGHere we show how to axiomatize the primitive actions and uents for a simpleelevator, and we write a GOLOG program to control this elevator.Primitive actions:� up(n) { Move the elevator up to oor n.� down(n) { Move the elevator down to oor n.� turnoff(n) { Turn o� call button n.� open { Open the elevator door.� close { Close the elevator door.Fluents:� current floor(s) = n { In situation s, the elevator is at oor n.� on(n; s) { In situation s, call button n is on.

www.manaraa.com

12 � next floor(n; s) { In situation s, the next oor to be served is n.Primitive action preconditions:Poss(up(n); s) � current floor(s) < n:Poss(down(n); s) � current floor(s) > n:Poss(open; s) � true:Poss(close; s) � true:Poss(turnoff(n); s) � on(n; s):Successor state axioms:Poss(a; s) � [current floor(do(a; s)) = m � fa = up(m) _ a = down(m) _current floor(s) = m ^ :(9n)a = up(n) ^:(9n)a = down(n)g]:P oss(a; s) � [on(m; do(a; s)) � on(m; s) ^ a 6= turnoff(m)]:A de�ned uent.next floor(n; s) � on(n; s) ^(8m):on(m; s) � jm� current floor(s)j � jn� current floor(s)j:This de�nes the next oor to be served as a nearest oor to the one where theelevator happens to be.The GOLOG procedures:proc serve(n) go floor(n) ; turnoff(n) ; open ; close endProc:proc go floor(n) (current floor = n)? j up(n) j down(n) endProc:proc serve a floor (� n)[next floor(n)? ; serve(n)] endProc:proc control [while (9n)on(n) do serve a floor endWhile] ; park endProc:proc park if current floor = 0 then open else down(0) ; open endIf endProc:Initial situation:current floor(S0) = 4; on(b; S0) � b = 3 _ b = 5:Notice that this last axiom speci�es that, initially, buttons 3 and 4 are on, andmoreover no other buttons are on. In other words, we have complete informationinitially about which call buttons are on. It is this completeness property of theinitial situation which will justify, in part, the Prolog implementation describedbelow in Section 5.Running the program:This is a theorem proving task; we need to establish the following entailment:Axioms j= (9s)Do(control; S0; s):44Stricly speaking, we must prove the sentence (9s)Do(�; control; S0; s) where � is the sequenceof procedure declarations just given. The call to control in this sentence serves as the mainprogram. See the de�nition of GOLOG programs and their semantics in Section 3.1 above.

www.manaraa.com

13Here, Axioms are those of Section 2.5. Notice especially what this entailment says,and why it makes sense.� Although the expression Do(control; S0; s) looks like an atomic formula,Dois a macro not a predicate, and the expression stands for a much longer sec-ond order situation calculus sentence. This will mention only the primitiveactions up, down, turnoff , open, close and the uents current floor, on,next floor, as well as the distinguished situation calculus symbols do, S0,Poss.� Because this macro-expanded sentence is legitimate situation calculus, itmakes sense to seek a proof of it fromAxioms, which characterize the uentsand actions of this elevator world.A successful \execution" of the program, i.e. a successful proof, might return thefollowing binding for s:s = do(open; do(down(0); do(close; do(open; do(turnoff(5);do(up(5); do(close; do(open; do(turnoff(3); do(down(3); S0))))))))))Such a binding represents an execution trace of the GOLOG program for the givendescription of the initial situation. This trace, namely, the action sequence[down(3); turnoff(3); open; close; up(5); turnoff(5); open; close; down(0); open];would next be passed to the elevator's execution module for controlling it in thephysical world.As one can see from the example, GOLOG is a logic programming language inthe following sense:1. Its interpreter is a general-purpose theorem prover. In its most general form,this must be a theorem prover for second order logic; in practice (see Section6 below, and Levesque, Lin, and Reiter [14]), �rst order logic is su�cient formost purposes.2. Like Prolog, GOLOG programs are executed for their side e�ects, namely,to obtain bindings for the existentially quanti�ed variables of the theorem.5. IMPLEMENTATION AND EXPERIMENTATIONIn this section, we discuss an implementation of the GOLOG language in Prolog.We begin by presenting a very simple version of this interpreter. We then showhow the elevator example above would be written for this interpreter and someexecution traces. We conclude by listing some of the applications currently beinginvestigated in GOLOG.5.1. An interpreterGiven that the execution of GOLOG involves a �nding a proof in second-order logic,it is perhaps somewhat surprising how easy it is to write a GOLOG interpreter.Figure 5.1 shows the entire program in CProlog.The do predicate here takes 3 arguments: a GOLOG action expression, andterms standing for the initial and �nal situations. Normally, a query will be of the

www.manaraa.com

14 FIGURE 5.1. A Golog interpreter in CProlog:- op(950, xfy, [#]). /* Nondeterministic action choice.*/do([],S,S). /* This clause and the next are for sequences */do([E|L],S,S1) :- do(E,S,S2), do(L,S2,S1).do(?(P),S,S) :- holds(P,S).do(E1 # E2,S,S1) :- do(E1,S,S1) ; do(E2,S,S1).do(if(P,E1,E2),S,S1) :- do([?(P),E1] # [?(neg(P)),E2],S,S1).do(star(E),S,S1) :- do([] # [E,star(E)],S,S1).do(while(P,E),S,S1):- do([star([?(P),E]),?(neg(P))],S,S1).do(pi(V,E),S,S1) :- sub(V,_,E,E1), do(E1,S,S1).do(E,S,S1) :- proc(E,E1), do(E1,S,S1).do(E,S,do(E,S)) :- primitive_action(E), poss(E,S)./* sub(Name,New,Term1,Term2): Term2 is Term1 with Name replaced by New. */sub(X1,X2,T1,T2) :- var(T1), T2 = T1.sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),T2 =..[F|L2].sub_list(X1,X2,[],[]).sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).holds(and(P1,P2),S) :- holds(P1,S), holds(P2,S).holds(or(P1,P2),S) :- holds(P1,S); holds(P2,S).holds(neg(P),S) :- not holds(P,S). /* Negation by failure */holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).form do(e,s0,S), so that an answer will be a binding for the �nal situation S. Inthis implementation, a legal GOLOG action expression e is one of the following:� [e1, : : :,en], sequence.� ?(p), where p is a condition (see below).� e1 # e2, nondeterministic choice of e1 or e2:� if(p,e1,e2), conditional.� star(e), nondeterministic repetition.� while(p,e), iteration.� pi(v,e), nondeterministic assignment, where v is an atom (standing for aGOLOG variable) and e is a GOLOG action expression that uses v.� a, where a is the name of a user-declared primitive action or de�ned proce-dure (see below).A condition p in the above is either a uent or an expression of the form and(p1,p2),or(p1,p2), neg(p), or some(v,p), where v is an atom and p is a condition usingv. In evaluating these conditions, the interpreter uses negation as failure to handleneg, and consults the user-supplied holds predicate to determine which uents aretrue.

www.manaraa.com

15In this implementation, a GOLOG application (like the elevator, below) is ex-pected to have the following parts:1. a collection of clauses of the form primitive action(act), declaring eachprimitive action.2. a collection of clauses of the form proc(name,body) declaring each de�nedprocedure (which can be recursive). The body here can be any legal GOLOGaction expression.3. a collection of clauses which de�ne the predicate poss(act,situation) forevery primitive action and situation. Typically, this requires one clause peraction, using a variable to range over all situations.4. a collection of clauses which de�ne the predicate holds(fluent,situation)for every uent and situation. Normally, this is done in two parts:(a) a collection of clauses de�ning holds(fluent,s0), characterizing whichuents are true in the initial situation. The clauses need not be atomic,and can involve arbitrary Prolog computation for determining entail-ments of the initial database. We make the usual Prolog closed worldassumption on this database.(b) a collection of clauses de�ning holds(fluent,do(act,situation)) forevery combination of uent, primitive action, and situation. Typically,this is done with a single clause for each uent, with variables for theactions and situations. This amounts to writing the successor stateaxiom for the uent.While this interpreter might appear intuitively to be doing the right thing, atleast in cases where the closed world assumption (CWA) is made, it turns out tobe non-trivial to state precisely in what sense it is correct. On the one hand, wehave the speci�cation of Do as a formula in second order logic, and on the other,we have the above do predicate, characterized by a set of Horn clauses. The exactcorrespondence between the two depends on a number of factors, and we do notintend to discuss them here. For a formal statement and proof of correctness ofthis interpreter, the interested reader should consult the companion paper [14].Given the simplicity of the characterization of the do predicate (in �rst-orderHorn clauses), and the complexity of the formula that results from Do (in second-order logic), a reasonable question to ask is why we even bother with the latter.The answer is that the de�nition of do is too weak: it is su�cient for �nding aterminating situation (when it exists) given an initial one,5but it cannot be used toshow non-termination. Consider the program � = [a�; (x 6= x)?]: For this program,we have that :Do(�; s; s0) is entailed for any s and s0; the do predicate, however,would simply run forever.On the other hand, the semantics of Prolog is often formulated in terms ofminimal models which, in the case of simple logic programs like the above inter-preter, have a number of desirable features. Could we not use these ideas insteadof second-order quanti�cation to characterize GOLOG program execution? Theanswer is that we could, but only when the set of axioms characterizing the initialsituation S0 can be made part of a logic program. Our speci�cation of Do, on the5This needs to be hedged: the Prolog interpreter is su�cient only if we assume a breadth-�rst execution strategy. Otherwise, GOLOG programs like park in Section 3.1, which terminateaccording to Do, could cause do to run forever.

www.manaraa.com

16 other hand, is fully general: it does exactly the right thing even when the axiomsdescribing the initial situation contain disjunctions, existential quanti�cations, andso on. The semantics of logic programs can perhaps be generalized to accommodatesuch axioms, but is not clear that the resulting speci�cation would be much simplerthan ours.We emphasize that the above interpreter relies on the standard Prolog CWA thatthe initial database { the facts true in the initial situation S0 { is complete. This wasthe case for the logical speci�cation of the elevator example of Section 4. For manyapplications, this is a reasonable assumption. For many others this is unrealistic,for example in a robotics setting in which the environment is not completely knownto the robot. In such cases, a more general GOLOG interpreter is necessary. Suchan interpreter might still make use of Prolog's backchaining mechanism to reducequeries about the current situation to queries about the initial situation. In otherwords, regression-based query evaluation (Waldinger [34], Pednault [21], Reiter [23])can be implemented using Prolog. However, answering the regressed queries in theinitial situation would require, in general, the full power of a �rst order theoremprover.5.2. The elevator exampleIn Figure 5.2, we present clauses de�ning the previously discussed elevator example,and in Figure 5.3, we show some queries to the interpreter for this program.In the �rst query, we ask the interpreter to repeatedly pick a oor and turn o�its call button until all such buttons are o�. The answers show that there are onlytwo ways to do this: either turn o� oor 3 then 5, or do it the other way around.In the second query, we ask the interpreter to either turn o� a call button orto go a to oor that satis�es the test next floor. Since this predicate has beende�ned to hold only of those oors whose button is on, this gives us four choices:turn o� oor 3 or 5, or go to oor 3 or 5.In the �nal query, we call the main elevator controller, control, to serve alloors and then park the elevator. There are only two ways of doing this: serveoor 3 then 5 then park, or serve oor 5 then 3 then park.Note that we have notattempted to prune the backtracking to avoid duplicate answers.5.3. ExperimentationThe actual implementation of GOLOG we have been using at the University ofToronto is in Quintus Prolog and incorporates a number of additional features fordebugging and for e�ciency beyond those of the simple interpreter presented here.For example, one serious limitation of the style of interpreter presented here isthe following: determining if some condition (like current floor(0)) holds in asituation involves looking at what actions led to that situation, and unwinding theseactions all the way back to the initial situation. This process is called regression inthe AI planning literature. Doing this repeatedly with very long sequences of actionscan take considerable time. Moreover, the Prolog terms representing situations thatare far removed from the initial situation end up being gigantic.However, it is possible in many cases to progress the initial database to handlethis (Lin and Reiter [16, 18]). The idea is that the interpreter periodically \rollsthe initial database forward" in response to the actions generated thus far during

www.manaraa.com

17FIGURE 5.2. The elevator controller/* Primitive control actions */primitive_action(turnoff(N)). /* Turn off call button N. */primitive_action(open). /* Open the elevator door. */primitive_action(close). /* Close the elevator door. */primitive_action(up(N)). /* Move the elevator up to floor N.*/primitive_action(down(N)). /* Move the elevator down to floor N.*//* Definitions of Complex Control Actions */proc(go_floor(N), ?(current_floor(N)) # up(N) # down(N)).proc(serve(N), [go_floor(N), turnoff(N), open, close]).proc(serve_a_floor, pi(n, [?(next_floor(n)), serve(n)])).proc(park, if(current_floor(0), open, [down(0), open]))./* control is the main loop. So long as there is an active call button,it serves one floor. When all buttons are off, it parks the elevator. */proc(control, [while(some(n, on(n)), serve_a_floor), park])./* Preconditions for Primitive Actions */poss(up(N),S) :- holds(current_floor(M),S), M < N.poss(down(N),S) :- holds(current_floor(M),S), M > N.poss(open,S).poss(close,S).poss(turnoff(N),S) :- holds(on(N),S)./* Successor state axioms for primitive fluents. */holds(current_floor(M),do(E,S)) :- E = up(M) ; E = down(M) ;not E = up(N), not E = down(N), holds(current_floor(M),S).holds(on(M),do(E,S)) :- holds(on(M),S), not E = turnoff(M)./* Initial situation. Call buttons: 3 and 5. The elevator is at floor 4. */holds(on(3),s0). holds(on(5),s0). holds(current_floor(4),s0)./* next_floor(N) determines which of the active call buttons should be servednext. Here, we simply choose an arbitrary active call button. */holds(next_floor(N),S) :- holds(on(N),S).the evaluation of the program. This progressed database becomes the new initialdatabase for the purposes of the continuing evaluation of the program. In this way,the interpreter maintains a database of just the current value of all uents, and the

www.manaraa.com

18 FIGURE 5.3. Running the elevator program?- do(pi(n,[?(on(n)),turnoff(n)]),s0,S).S = do(turnoff(3),s0) ;S = do(turnoff(5),s0) ;no- ---?- do(pi(n, turnoff(n) # ([?(next_floor(n)),go_floor(n)])),s0,S).S = do(turnoff(3),s0) ;S = do(turnoff(5),s0) ;S = do(down(3),s0) ;S = do(up(5),s0) ;no- ---?- do(control,s0,S).S = do(open,do(down(0),do(close,do(open,do(turnoff(5),do(up(5),do(close,do(open,do(turnoff(3),do(down(3),s0)))))))))) ;S = do(open,do(down(0),do(close,do(open,do(turnoff(3),do(down(3),do(close,do(open,do(turnoff(5),do(up(5),s0)))))))))) ;S = do(open,do(down(0),do(close,do(open,do(turnoff(5),do(up(5),do(close,do(open,do(turnoff(3),do(down(3),s0)))))))))) ;S = do(open,do(down(0),do(close,do(open,do(turnoff(3),do(down(3),do(close,do(open,do(turnoff(5),do(up(5),s0)))))))))) ;nodistance from the initial situation is no longer a problem.To evaluate our interpreter and the entire GOLOG framework, we have beenexperimenting with various types of applications. The most advanced involves arobotics application { mail delivery in an o�ce environment [9]. The high-levelcontroller of the robot programmed in GOLOG is interfaced to an existing roboticspackage that supports path planning and local navigation. The system currently

www.manaraa.com

19works in simulation mode; experiments with a real robot have begun in collabora-tion with the robotics group at the University of Bonn.Another application involves tools for home banking [27]. In this case, a numberof software agents written in GOLOG handle various parts of the banking process(responding to buttons on an ATM terminal, managing the accounts at a bank,monitoring account levels for a user etc.) and communicate over TCP/IP.CONGOLOG, a version of the language supporting concurrency (including in-terrupts, priorities, and support for exogenous actions) is also being implemented,and experiments with various applications (meeting scheduling, multi-elevator co-ordination) are under way.6. DISCUSSIONGOLOG is designed as a logic programming language for dynamic domains. As itsfull name (alGOl in LOGic) implies, GOLOG attempts to blend ALGOL program-ming style into logic. It borrows from ALGOL many well-known, and well-studiedprogramming constructs such as sequence, conditionals, recursive procedures andloops.However, unlike ALGOL and most other conventional programming languages,programs in GOLOG decompose into primitives that in most cases refer to actions inthe external world (e.g. picking up an object or telling something to another agent),as opposed to commands which merely change machine states (e.g. assignments toregisters). Furthermore, these primitives are formulated by axioms in �rst-orderlogic so their e�ects can be formally reasoned about. This feature of GOLOGsupports the speci�cation of dynamic systems at the right level of abstraction.More importantly, GOLOG programs are evaluated with a theorem prover. Theuser supplies precondition axioms, one per action, successor state axioms, one peruent, a speci�cation of the initial situation of the world, and a GOLOG programspecifying the behavior of the agents in the system. Executing a program amountsto �nding a ground situation term � such thatAxioms j= Do(program; S0; �):This is done by trying to proveAxioms j= (9s)Do(program; S0 ; s);and if a (constructive) proof is obtained, such a ground termdo(an; : : :do(a2; do(a1; S0)) : : :)is obtained as a binding for the variable s. Then the sequence of actions [a1; a2; : : : ; an]is sent to the primitive action execution module. This looks very like logic pro-gramming languages such as Prolog. However, unlike such general purpose logicprogramming languages, GOLOG is designed speci�cally for specifying agents' be-haviors and for modeling dynamic systems. In particular, in GOLOG, actions playa fundamental role.There is a body of literature related to the GOLOG project:1. Dixon's Amala [3]. Amala is a programming language in a conventionalimperative style. It is designed after the observation that the semantics ofembedded programs should reect the assumptions about the environment

www.manaraa.com

20 as directly as possible. This is similar to our concern that language primi-tives should be user-de�ned, at a high level of abstraction. However, whileGOLOG requires these primitives be formally speci�ed within the language,Amala does not. One consequence of this is that programs in GOLOG canbe executed by a theorem prover, but not those in Amala.2. Classical AI planning work (Green [6] and Fikes and Nilsson [4]). Likeclassical AI planning, GOLOG requires primitives and their e�ects to beformally speci�ed. The major di�erence is that GOLOG focuses on high-level programming rather than plan synthesis at run-time. But sketchy plansare allowed; nondeterminism can be used to infer the missing details. Inour elevator example, it was left to the GOLOG interpreter to �nd a legalsequence of actions to serve all active call buttons. But we can go wellbeyond this. As an extreme case, the programwhile:Goal do (� a)[Appropriate(a)?; a] endWhile;repeatedly selects an appropriate action and performs it until some goalis achieved. Finding a legal sequence of actions in this case is simply areformulation of the planning problem.3. Situated automata [26]. GOLOG shares with situated automata the samephilosophy of designing agents using a high level language, and then com-piling the high-level programs into low-level ones that can be immediatelyexecuted. In the framework considered here, the low-level programs are sim-ply sequences of primitive actions. In [13], we also consider cases involvingsensing (see below) where no such sequence exists, and it is necessary tocompile to low-level programs containing loops and conditionals.4. Shoham's AGENT-0 programming language [31]. This includes a model ofcommitments and capabilities, and has simple communication acts built-in;its agents all have a generic rule-based architecture; there is also a globalclock and all beliefs are about time-stamped propositions. However, there isno automatic maintenance of the agents beliefs based on a speci�cation ofprimitive actions as in GOLOG and only a few types of complex actions arehandled; there also seems to be less emphasis on having a complete formalspeci�cation of the system.A number of other groups are also developing formalisms for the speci�cationof arti�cial agents. See [35] for a detailed survey of this research.5. Transaction logic (Bonner and Kifer [2]). This is a new logic for de�ningcomplex database transactions, and like GOLOG provides a rich repertoireof operators for de�ning new transactions in terms of old. These includesequence, nondeterministic choice, conditionals and iteration. The Bonner-Kifer approach focuses on the de�nition of complex transactions in termsof elementary updates. On the assumption that these elementary updatessuccessfully address the frame problem, any complex update de�ned in termsof these elementary ones will inherit a correct solution to the frame problem.Unfortunately, Bonner and Kifer do not address the frame problem for theseelementary updates; this task is left to the person specifying the database.6. The strategies of McCarthy and Hayes [20]. This is a surprisingly earlyproposal for representing complex actions (called strategies) in the situationcalculus. McCarthy and Hayes even appeal to an Algol-like language for rep-

www.manaraa.com

21resenting their strategies, and they include a mechanism for returning sym-bolic execution traces, as sequences of actions, of these strategies. Moreover,they sketch a method for proving properties of strategies. While McCarthyand Hayes provide no formal development of their proposal, it neverthelessanticipates much of the spirit and technical content of our GOLOG project.The version of GOLOG presented here omits some important considerations.The following is a partial list:1. Sensing and knowledge. When modeling an autonomous agent, it is neces-sary to consider the agent's perceptual actions, e.g. acts of seeing, hearing,etc. Unlike ordinary actions that a�ect the environment, perceptual ac-tions a�ect an agent's mental state, i.e. its state of knowledge. Scherl andLevesque [28] provide a situation calculus account of knowledge, and withinthis setting, show how to solve the frame problem for perceptual actions.2. Sensing and knowing how. In the presence of sensing actions, the methoddescribed above for executing GOLOG program is no longer adequate. Forexample, suppose the sensing action senseP reads the truth value of P , andthe primitives a and b are always possible. Then the following program P isperfectly reasonable:senseP ; if P then a else b endIfand should be executable with respect to any initial situation. However, itis not the case thatAxioms j= Do(P; S0; �)for any ground situation term �: That is, at compile time, the agent does notknow the truth value of P and therefore does not know the exact sequenceof primitive actions that corresponds to the execution of this program. Wehave considered several possible solutions to this problem. See [11, 13].3. Exogenous actions. We have assumed that all events of importance are underthe agent's control. That is why, in the elevator example, we did not includea primitive action turnon(n), meaning push call button n. Such an actioncan occur at any time, and is not under the elevator's control. turnon(n) isan example of an exogenous action. Other such examples are actions undernature's control { it starts to rain, a falling ball bounces on reaching the oor.In writing an elevator or robot controller, one would not include exogenousactions as part of the program, because the robot is in no position to causesuch actions to happen.4. Concurrency and reactivity. Once we allow for exogenous events, it becomesvery useful to write programs which monitor certain conditions, and takeappropriate actions when they become true. For example, in the middleof serving a oor, smoke might be detected by the elevator, in which case,normal operation should be suspended, and an alarm should be sounded untilthe alarm is reset. As mentioned earlier, we are investigating a concurrentversion of GOLOG where a number of complex actions of this sort can beexecuted concurrently (at di�erent priorities). We believe that this formof concurrency allows a much more natural speci�cation of controllers thatneed to quickly react to their environment while following predeterminedplans.

www.manaraa.com

22 5. Continuous processes. It is widely believed that, by virtue of its reliance ondiscrete situations, the situation calculus cannot represent continuous pro-cesses and their evolution in time, like an object falling under the inuenceof gravity. However, as shown by Pinto [22] and also by Ternovskaia [33],one can view a process as a uent { falling(s) { which becomes true at thetime t that the instantaneous action start falling(t) occurs, and becomesfalse at the time t of occurrence of the instantaneous action end falling(t).One can then write axioms that describe the evolution in time of the fallingobject. Reiter [25] gives a situation calculus account of such natural eventswhose behaviors are described by known laws of physics. This means thatone can write GOLOG simulators of such dynamical systems [8]. Moreover,although we have not yet explored this possibility, the GOLOG programmercan now write robot controllers which allow a robot to exploit such naturallyoccurring exogenous events in its environment.7. CONCLUSIONSGOLOG is a logic programming language for implementing applications in dynamicdomains like robotics, process control, intelligent software agents, discrete eventsimulation, etc. Its basis is a formal theory of actions speci�ed in an extendedversion of the situation calculus.GOLOG has a number of novel features, both as a programming language, andas an implementation tool for dynamic modeling.1. Formally, a GOLOG program is a macro which expands during the evalu-ation of the program to a (usually second order) sentence in the situationcalculus. This sentence mentions only the primitive, user de�ned actionsand uents. The theorem proving task in the evaluation of the program isto prove this sentence relative to a background axiomatization consisting ofthe foundational axioms of the situation calculus, the action preconditionaxioms for the primitive actions, the successor state axioms for the uents,and the axioms describing the initial situation.2. GOLOG programs are normally evaluated to obtain a binding for the existen-tially quanti�ed situation variable in the top-level call (9s)Do(program; S0 ; s).The binding so obtained by a successful proof is a symbolic trace of theprogram's execution, and denotes that sequence of actions which is to beperformed in the external world. At this point, the entire GOLOG compu-tation has been performed o�-line. To e�ect an actual change in the world,this program trace must be passed to an execution module which knows howto physically perform the sequence of primitive actions in the trace.3. Because a GOLOG program macro-expands to a situation calculus sentence,we can prove properties of this program (termination, correctness, etc.) di-rectly within the situation calculus.4. Unlike conventional programming languages, whose primitive instruction setis �xed in advance (assignments to variables, pointer-changing, etc.), andwhose primitive function and predicate set is also prede�ned (values andtypes of program variables, etc.), GOLOG primitive actions and uents areuser de�ned by action precondition and successor state axioms. In the simu-lation of dynamic systems, this facility allows the programmer to specify his

www.manaraa.com

23primitives in accordance with the naturally occurring events in the world heis modeling. This, in turn, allows programs to be written at a very high levelof abstraction, without concern for how the system's primitive architectureis actually implemented.5. The GOLOG programmer can de�ne complex action schemas { advice toa robot about how to achieve certain e�ects { without specifying in detailhow to perform these actions. It becomes the theorem prover's responsibilityto �gure out one or more detailed executable sequences of primitive actionswhich will achieve the desired e�ects.while [(9block)ontable(block)] do (� b)remove(b) endWhile;is such an action schema; it does not specify any particular sequence inwhich the blocks are to be removed. Similarly, the elevator program doesnot specify in which order the oors are to be served. On this view ofdescribing complex behaviors, the GOLOG programmer speci�es a skeletonplan; the evaluator uses deduction, in the context of a speci�c initial worldsituation, to �ll in the details. Thus GOLOG allows the programmer tostrike a compromise between the often computationally infeasible classicalplanning task, in which a plan must be deduced entirely from scratch, anddetailed programming, in which every little step must be speci�ed.There are several limitations to the version of GOLOG that has been presentedhere. The implementation only works with completely known initial situations.Adapting GOLOG to work with non-Prolog theories in the initial situation willrequire some e�ort (see [16] for ideas on this). Handling sensing actions requiresthe system's knowledge state to be modeled explicitly [28] and complicates therepresentation and updating of the world model. Exogenous events also a�ect thepicture as the system may no longer know what the actual history is. In manydomains, it is also necessary to deal with sensor noise and \control error" (see [1]for some initial results).We are also developing an extended version of the language called CONGOLOGthat supports concurrent processes, interrupts, and di�ering priorities on processes(based on an interleaving semantics for concurrent processes) [12]. Techniques forrepresenting and reasoning about continuous processes (e.g., �lling a bathtub) arealso under investigation [25]. Finally, work is also in progress on a multi-agentdistributed version of CONGOLOG for agent-oriented programming applications,which will support distinct world models for each agent and a library of high-levelcommunication actions [10]. Notions like ability, goals, commitments, and rationalchoice become important in such domains and we are extending our model to dealwith them [30].REFERENCES1. Fahiem Bacchus, Joseph Y. Halpern, and J. Levesque, Hector. Reasoning aboutnoisy sensors in the situation calculus. In Chris S. Mellish, editor, Proceedingsof the Fourteenth International Joint Conference on Arti�cial Intelligence, pages1933{1940, Montr�eal, August 1995. Morgan Kaufmann Publishing.2. Anthony Bonner and Michael Kifer. An overview of transaction logic. TheoreticalComputer Science, 133:205-265, October 1994.

www.manaraa.com

24 3. Michael Dixon. Embedded Computation and the Semantics of Programs. PhDthesis, Department of Computer Science, Stanford University, Stanford, CA, 1991.Also appeared as Xerox PARC Technical Report SSL-91-1.4. Richard E. Fikes and Nils J. Nilsson. STRIPS: a new approach to the application oftheorem proving to problem solving. Arti�cial Intelligence, 2(3/4):189{208, 1971.5. Robert Goldblatt. Logics of Time and Computation. CSLI Lecture Notes No. 7.Center for the Study of Language and Information, Stanford University, Stanford,CA, 2nd. edition, 1987.6. Cordell C. Green. Theorem proving by resolution as a basis for question-answeringsystems. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4,pages 183{205. American Elsevier, New York, 1969.7. Andrew R. Haas. The case for domain-speci�c frame axioms. In F.M. Brown, ed-itor, The Frame Problem in Arti�cial Intelligence: Proceedings of the 1987 Work-shop, pages 343{348, Lawrence, KA, April 1987. Morgan Kaufmann Publishing.8. Todd G. Kelley, Modeling complex systems in the situation calculus: A case studyusing the Dagstuhl steam boiler problem. In L.C. Aiello, J. Doyle and S.C. Shapiro,editors, Principles of Knowledge Representation and Reasoning: Proceedings of theFifth International Conference (KR'96), to appear. Morgan Kaufmann Publishers,San Francisco, CA.9. Yves Lesp�erance, Hector J. Levesque, F. Lin, Daniel Marcu, Raymond Reiter, andRichard B. Scherl. A logical approach to high-level robot programming { a progressreport. In Benjamin Kuipers, editor, Control of the Physical World by IntelligentAgents, Papers from the 1994 AAAI Fall Symposium, pages 109{119, New Orleans,LA, November 1994.10. Yves Lesp�erance, Hector J. Levesque, F. Lin, Daniel Marcu, Raymond Reiter, andRichard B. Scherl. Foundations of a logical approach to agent programming. InWorking Notes of the IJCAI-95 Workshop on Agent Theories, Architectures, andLanguages, August 20-25 1995.11. Yves Lesp�erance, Hector J. Levesque, Fangzhen Lin, and Richard B. Scherl. Abilityand knowing how in the situation calculus. In preparation, 1995.12. Hector J. Levesque. Concurrency in the situation calculus. In preparation, 1996.13. Hector J. Levesque. What is planning in the presence of sensing? In Proceedingsof the Thirteenth National Conference on Arti�cial Intelligence, pages 1139{1146,Portland, Oregon, Aug. 4{8, 1996. AAAI Press/The MIT Press.14. Hector J. Levesque, Fangzhen Lin, and Raymond Reiter. De�ning complex ac-tions in the situation calculus. Technical report, Department of Computer Science,University of Toronto, 1996. In preparation.15. Fangzhen Lin. Embracing causality in specifying the indirect e�ects of actions. InChris S. Mellish, editor, Proceedings of the Fourteenth International Joint Confer-ence on Arti�cial Intelligence, pages 1933{1940, Montr�eal, August 1995. MorganKaufmann Publishing.16. Fangzhen Lin and Raymond Reiter. How to progress a database (and why) I.logical foundations. In Jon Doyle, Erik Sandewall, and Pietro Torasso, editors,Principles of Knowledge Representation and Reasoning: Proceedings of the FourthInternational Conference, pages 425{436, Bonn, Germany, 1994. Morgan Kauf-mann Publishing.17. Fangzhen Lin and Raymond Reiter. State constraints revisited. Journal of Logicand Computation, 4(5):655{678, 1994.18. Fangzhen Lin and Raymond Reiter. How to progress a database II: The STRIPSconnection. In Proceedings of the Fourteenth International Joint Conference onArti�cial Intelligence, pages 2001{2007, Montreal, Aug. 20-25, 1995.19. Zohar Manna and Richard Waldinger. How to clear a block: A theory of plans.Journal of Automated Reasoning, 3:343{377, 1987.

www.manaraa.com

2520. John McCarthy and Patrick Hayes. Some philosophical problems from the stand-point of arti�cial intelligence. In B. Meltzer and D. Michie, editors, MachineIntelligence 4, pages 463{502. Edinburgh University Press, Edinburgh, Scotland,1969.21. Edwin P. D. Pednault. ADL: Exploring the middle ground between STRIPS andthe situation calculus. In R.J. Brachman, H.J. Levesque, and R. Reiter, editors,Proceedings of the First International Conference on Principles of Knowledge Rep-resentation and Reasoning, pages 324{332, Toronto, ON, May 1989. Morgan Kauf-mann Publishing.22. Javier Andr�es Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis,Department of Computer Science, University of Toronto, Toronto, ON, February1994. Available as technical report KRR-TR-94-1.23. Raymond Reiter. The frame problem in the situation calculus: A simple solution(sometimes) and a completeness result for goal regression. In Vladimir Lifschitz,editor, Arti�cial Intelligence and Mathematical Theory of Computation: Papers inHonor of John McCarthy, pages 359{380. Academic Press, San Diego, CA, 1991.24. Raymond Reiter. Proving properties of states in the situation calculus. Arti�cialIntelligence, pages 337{351, December 1993.25. Raymond Reiter. Natural actions, concurrency and continuous time in the situationcalculus. In L.C. Aiello, J. Doyle and S.C. Shapiro, editors, Principles of KnowledgeRepresentation and Reasoning: Proceedings of the Fifth International Conference(KR'96), 1996, to appear. Morgan Kaufmann Publishers, San Francisco, CA.26. Stanley J. Rosenschein and Leslie P. Kaelbling. The synthesis of digital machineswith provable epistemic properties. In Joseph Y. Halpern, editor, Proceedings ofthe 1986 Conference on Theoretical Aspects of Reasoning about Knowledge, pages83{98. Morgan Kaufmann Publishers, Inc., Monterey, CA, 1986.27. Shane Ruman. Golog as an agent-programming language: Experiments in devel-oping banking applications. Master's thesis, Department of Computer Science,University of Toronto, Toronto, ON, 1995. In preparation.28. Richard B. Scherl and Hector J. Levesque. The frame problem and knowledge-producing actions. In Proceedings of the Eleventh National Conference on Arti�cialIntelligence, pages 689{695, Washington, DC, July 1993. AAAI Press/The MITPress.29. Len K. Schubert. Monotonic solution to the frame problem in the situation calcu-lus: An e�cient method for worlds with fully speci�ed actions. In H.E. Kyberg,R.P. Loui, and G.N. Carlson, editors, Knowledge Representation and DefeasibleReasoning, pages 23{67. Kluwer Academic Press, Boston, MA, 1990.30. Steven Shapiro, Yves Lesp�erance, and Hector J. Levesque. Goals and rationalaction in the situation calculus | a preliminary report. In Working Notes ofthe AAAI Fall Symposium on Rational Agency: Concepts, Theories, Models, andApplications, Cambridge, MA, November 1995.31. Yoav Shoham. Agent-oriented programming. Arti�cial Intelligence, 60(1):51{92,1993.32. Joseph E. Stoy. Denotational Semantics. MIT Press, 1977.33. Eugenia Ternovskaia. Interval situation calculus. In Proc. of ECAI'94 WorkshopW5 on Logic and Change, pages 153{164, Amsterdam, August 8-12, 1994.34. Richard Waldinger. Achieving several goals simultaneously. In E. Elcock andD. Michie, editors, Machine Intelligence 8, pages 94{136. Ellis Horwood, Edin-burgh, Scotland, 1977.35. M.J. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice.Knowledge Engineering Review, 10, 1995. To appear.

